Duckietown Challenges Home Challenges Submissions

Job 118990

Job ID118990
submission18058
userETU-JBR Team
user labelLF_sor_1
challengeaido-LF-real-validation
stepeval0
statusaborted
up to dateyes
evaluator33
date started
date completed
duration0:00:44
message
==> Entrypoint Netwo [...]
==> Entrypoint
Network configured successfully.
INFO: ROBOT_TYPE is externally set to 'duckiebot'.
<== Entrypoint
DEBUG:commons:version: 6.2.4 *
DEBUG:typing:version: 6.2.3
DEBUG:duckietown_world:duckietown-world version 6.2.38 path /usr/local/lib/python3.8/dist-packages
DEBUG:geometry:PyGeometry-z6 version 2.1.4 path /usr/local/lib/python3.8/dist-packages
DEBUG:aido_schemas:aido-protocols version 6.0.59 path /usr/local/lib/python3.8/dist-packages
DEBUG:nodes:version 6.2.13 path /usr/local/lib/python3.8/dist-packages pyparsing 2.4.6
DEBUG:gym-duckietown:gym-duckietown version 6.1.30 path /usr/local/lib/python3.8/dist-packages

DEBUG:ipce:version 6.1.1 path /usr/local/lib/python3.8/dist-packages
DEBUG:nodes_wrapper:checking implementation
DEBUG:nodes_wrapper:checking implementation OK
DEBUG:nodes_wrapper.PytorchRLTemplateAgent:run_loop
  fin: /fifos/ego0-in
 fout: fifo:/fifos/ego0-out
DEBUG:nodes_wrapper:Fifo /fifos/ego0-out created. I will block until a reader appears.
DEBUG:nodes_wrapper:Fifo reader appeared for /fifos/ego0-out.
DEBUG:nodes_wrapper.PytorchRLTemplateAgent:Starting reading
 fi_desc: /fifos/ego0-in
 fo_desc: fifo:/fifos/ego0-out
INFO:nodes_wrapper.PytorchRLTemplateAgent.data:0ae159d52154:PytorchRLTemplateAgent: torch.cuda.is_available = True AIDO_REQUIRE_GPU = None
INFO:nodes_wrapper.PytorchRLTemplateAgent.data:0ae159d52154:PytorchRLTemplateAgent: init()
/usr/local/lib/python3.8/dist-packages/torch/cuda/__init__.py:104: UserWarning: 
NVIDIA GeForce RTX 3070 with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70 sm_75.
If you want to use the NVIDIA GeForce RTX 3070 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/

  warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))
INFO:nodes_wrapper.PytorchRLTemplateAgent.data:0ae159d52154:PytorchRLTemplateAgent: device 0 of 1; name = 'NVIDIA GeForce RTX 3070'
INFO:aido_schemas:PytorchRLTemplateAgent init
2021-12-01 18:48:09,727	WARNING deprecation.py:38 -- DeprecationWarning: `monitor` has been deprecated. Use `record_env` instead. This will raise an error in the future!
2021-12-01 18:48:09,727	WARNING ppo.py:143 -- `train_batch_size` (128) cannot be achieved with your other settings (num_workers=1 num_envs_per_worker=1 rollout_fragment_length=200)! Auto-adjusting `rollout_fragment_length` to 128.
2021-12-01 18:48:10,009	WARNING services.py:1748 -- WARNING: The object store is using /tmp instead of /dev/shm because /dev/shm has only 67096576 bytes available. This will harm performance! You may be able to free up space by deleting files in /dev/shm. If you are inside a Docker container, you can increase /dev/shm size by passing '--shm-size=10.24gb' to 'docker run' (or add it to the run_options list in a Ray cluster config). Make sure to set this to more than 30% of available RAM.
(pid=268) DEBUG:commons:version: 6.2.4 *
(pid=268) DEBUG:typing:version: 6.2.3
(pid=268) DEBUG:duckietown_world:duckietown-world version 6.2.38 path /usr/local/lib/python3.8/dist-packages
(pid=268) DEBUG:geometry:PyGeometry-z6 version 2.1.4 path /usr/local/lib/python3.8/dist-packages
(pid=268) DEBUG:aido_schemas:aido-protocols version 6.0.59 path /usr/local/lib/python3.8/dist-packages
(pid=268) DEBUG:nodes:version 6.2.13 path /usr/local/lib/python3.8/dist-packages pyparsing 2.4.6
(pid=268) DEBUG:gym-duckietown:gym-duckietown version 6.1.30 path /usr/local/lib/python3.8/dist-packages
(pid=268)
(pid=268) WARNING:wrappers.general_wrappers:Dummy Duckietown Gym reset() called!
(pid=268) 2021-12-01 18:48:14,405	WARNING deprecation.py:38 -- DeprecationWarning: `SampleBatch['is_training']` has been deprecated. Use `SampleBatch.is_training` instead. This will raise an error in the future!
2021-12-01 18:48:14,542	WARNING deprecation.py:38 -- DeprecationWarning: `SampleBatch['is_training']` has been deprecated. Use `SampleBatch.is_training` instead. This will raise an error in the future!
{'audio': ('xaudio2', 'directsound', 'openal', 'pulse', 'silent'), 'debug_font': False, 'debug_gl': True, 'debug_gl_trace': False, 'debug_gl_trace_args': False, 'debug_graphics_batch': False, 'debug_lib': False, 'debug_media': False, 'debug_texture': False, 'debug_trace': False, 'debug_trace_args': False, 'debug_trace_depth': 1, 'debug_trace_flush': True, 'debug_win32': False, 'debug_x11': False, 'graphics_vbo': True, 'shadow_window': True, 'vsync': None, 'xsync': True, 'xlib_fullscreen_override_redirect': False, 'darwin_cocoa': True, 'search_local_libs': True, 'advanced_font_features': False, 'headless': False, 'headless_device': 0}
{'callbacks': <ray.rllib.agents.callbacks.MultiCallbacks object at 0x7f564f26f3a0>,
 'env': 'Duckietown',
 'env_config': {'accepted_start_angle_deg': 4,
                'action_delay_ratio': 0.0,
                'action_type': 'heading',
                'aido_wrapper': False,
                'camera_rand': False,
                'crop_image_top': True,
                'distortion': True,
                'domain_rand': False,
                'dynamics_rand': False,
                'episode_max_steps': 10,
                'eval': True,
                'experiment_name': 'Debug',
                'frame_repeating': 0.0,
                'frame_skip': 1,
                'frame_stacking': True,
                'frame_stacking_depth': 3,
                'grayscale_image': False,
                'mode': 'debug',
                'motion_blur': False,
                'obstacles': {'duckie': {'density': 0.5, 'static': True},
                              'duckiebot': {'density': 0, 'static': False}},
                'resized_input_shape': '(84, 84)',
                'reward_function': 'posangle',
                'seed': 0,
                'simulation_framerate': 30,
                'spawn_forward_obstacle': False,
                'spawn_obstacles': False,
                'top_crop_divider': 3,
                'training_map': 'loop_empty',
                'wandb': {'project': 'duckietown-rllib'}},
 'evaluation_config': {'monitor': True},
 'evaluation_interval': 25,
 'evaluation_num_episodes': 10,
 'framework': 'torch',
 'gamma': 0.99,
 'lr': 0.0001,
 'monitor': False,
 'num_gpus': 1,
 'num_workers': 1,
 'seed': 1234,
 'train_batch_size': 128}
(RolloutWorker pid=268) {'audio': ('xaudio2', 'directsound', 'openal', 'pulse', 'silent'), 'debug_font': False, 'debug_gl': True, 'debug_gl_trace': False, 'debug_gl_trace_args': False, 'debug_graphics_batch': False, 'debug_lib': False, 'debug_media': False, 'debug_texture': False, 'debug_trace': False, 'debug_trace_args': False, 'debug_trace_depth': 1, 'debug_trace_flush': True, 'debug_win32': False, 'debug_x11': False, 'graphics_vbo': True, 'shadow_window': True, 'vsync': None, 'xsync': True, 'xlib_fullscreen_override_redirect': False, 'darwin_cocoa': True, 'search_local_libs': True, 'advanced_font_features': False, 'headless': False, 'headless_device': 0}
ERROR:nodes_wrapper.PytorchRLTemplateAgent:Error in node PytorchRLTemplateAgent
 ET: InternalProblem
 tb: |Traceback (most recent call last):
     |  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 388, in loop
     |    call_if_fun_exists(node, "init", context=context_data)
     |  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
     |    f(**kwargs)
     |  File "solution.py", line 32, in init
     |    self.model = registy(True)
     |  File "/submission/run.py", line 45, in registy
     |    trainer = PPOTrainer(config=rllib_config)
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 137, in __init__
     |    Trainer.__init__(self, config, env, logger_creator)
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 623, in __init__
     |    super().__init__(config, logger_creator)
     |  File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 107, in __init__
     |    self.setup(copy.deepcopy(self.config))
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 147, in setup
     |    super().setup(config)
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 776, in setup
     |    self._init(self.config, self.env_creator)
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 171, in _init
     |    self.workers = self._make_workers(
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 858, in _make_workers
     |    return WorkerSet(
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 110, in __init__
     |    self._local_worker = self._make_worker(
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 406, in _make_worker
     |    worker = cls(
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 584, in __init__
     |    self._build_policy_map(
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 1384, in _build_policy_map
     |    self.policy_map.create_policy(name, orig_cls, obs_space, act_space,
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy_map.py", line 143, in create_policy
     |    self[policy_id] = class_(observation_space, action_space,
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy_template.py", line 280, in __init__
     |    self._initialize_loss_from_dummy_batch(
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy.py", line 731, in _initialize_loss_from_dummy_batch
     |    self.compute_actions_from_input_dict(
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/torch_policy.py", line 302, in compute_actions_from_input_dict
     |    return self._compute_action_helper(input_dict, state_batches,
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/threading.py", line 21, in wrapper
     |    return func(self, *a, **k)
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/torch_policy.py", line 366, in _compute_action_helper
     |    dist_inputs, state_out = self.model(input_dict, state_batches,
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 243, in __call__
     |    res = self.forward(restored, state or [], seq_lens)
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/torch/visionnet.py", line 212, in forward
     |    conv_out = self._convs(self._features)
     |  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
     |    result = self.forward(*input, **kwargs)
     |  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 117, in forward
     |    input = module(input)
     |  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
     |    result = self.forward(*input, **kwargs)
     |  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/torch/misc.py", line 118, in forward
     |    return self._model(x)
     |  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
     |    result = self.forward(*input, **kwargs)
     |  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 117, in forward
     |    input = module(input)
     |  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
     |    result = self.forward(*input, **kwargs)
     |  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/padding.py", line 21, in forward
     |    return F.pad(input, self.padding, 'constant', self.value)
     |  File "/usr/local/lib/python3.8/dist-packages/torch/nn/functional.py", line 3553, in _pad
     |    return _VF.constant_pad_nd(input, pad, value)
     |RuntimeError: CUDA error: no kernel image is available for execution on the device
     |
     |The above exception was the direct cause of the following exception:
     |
     |Traceback (most recent call last):
     |  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 287, in run_loop
     |    loop(my_logger, node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin,
     |  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 480, in loop
     |    raise InternalProblem(msg) from e  # XXX
     |zuper_nodes.structures.InternalProblem: Unexpected error:
     |
     || Traceback (most recent call last):
     ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 388, in loop
     ||     call_if_fun_exists(node, "init", context=context_data)
     ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
     ||     f(**kwargs)
     ||   File "solution.py", line 32, in init
     ||     self.model = registy(True)
     ||   File "/submission/run.py", line 45, in registy
     ||     trainer = PPOTrainer(config=rllib_config)
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 137, in __init__
     ||     Trainer.__init__(self, config, env, logger_creator)
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 623, in __init__
     ||     super().__init__(config, logger_creator)
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 107, in __init__
     ||     self.setup(copy.deepcopy(self.config))
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 147, in setup
     ||     super().setup(config)
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 776, in setup
     ||     self._init(self.config, self.env_creator)
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 171, in _init
     ||     self.workers = self._make_workers(
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 858, in _make_workers
     ||     return WorkerSet(
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 110, in __init__
     ||     self._local_worker = self._make_worker(
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 406, in _make_worker
     ||     worker = cls(
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 584, in __init__
     ||     self._build_policy_map(
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 1384, in _build_policy_map
     ||     self.policy_map.create_policy(name, orig_cls, obs_space, act_space,
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy_map.py", line 143, in create_policy
     ||     self[policy_id] = class_(observation_space, action_space,
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy_template.py", line 280, in __init__
     ||     self._initialize_loss_from_dummy_batch(
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy.py", line 731, in _initialize_loss_from_dummy_batch
     ||     self.compute_actions_from_input_dict(
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/torch_policy.py", line 302, in compute_actions_from_input_dict
     ||     return self._compute_action_helper(input_dict, state_batches,
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/threading.py", line 21, in wrapper
     ||     return func(self, *a, **k)
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/torch_policy.py", line 366, in _compute_action_helper
     ||     dist_inputs, state_out = self.model(input_dict, state_batches,
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 243, in __call__
     ||     res = self.forward(restored, state or [], seq_lens)
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/torch/visionnet.py", line 212, in forward
     ||     conv_out = self._convs(self._features)
     ||   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
     ||     result = self.forward(*input, **kwargs)
     ||   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 117, in forward
     ||     input = module(input)
     ||   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
     ||     result = self.forward(*input, **kwargs)
     ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/torch/misc.py", line 118, in forward
     ||     return self._model(x)
     ||   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
     ||     result = self.forward(*input, **kwargs)
     ||   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 117, in forward
     ||     input = module(input)
     ||   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
     ||     result = self.forward(*input, **kwargs)
     ||   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/padding.py", line 21, in forward
     ||     return F.pad(input, self.padding, 'constant', self.value)
     ||   File "/usr/local/lib/python3.8/dist-packages/torch/nn/functional.py", line 3553, in _pad
     ||     return _VF.constant_pad_nd(input, pad, value)
     || RuntimeError: CUDA error: no kernel image is available for execution on the device
     ||
     |
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 388, in loop
    call_if_fun_exists(node, "init", context=context_data)
  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
    f(**kwargs)
  File "solution.py", line 32, in init
    self.model = registy(True)
  File "/submission/run.py", line 45, in registy
    trainer = PPOTrainer(config=rllib_config)
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 137, in __init__
    Trainer.__init__(self, config, env, logger_creator)
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 623, in __init__
    super().__init__(config, logger_creator)
  File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 107, in __init__
    self.setup(copy.deepcopy(self.config))
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 147, in setup
    super().setup(config)
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 776, in setup
    self._init(self.config, self.env_creator)
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 171, in _init
    self.workers = self._make_workers(
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 858, in _make_workers
    return WorkerSet(
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 110, in __init__
    self._local_worker = self._make_worker(
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 406, in _make_worker
    worker = cls(
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 584, in __init__
    self._build_policy_map(
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 1384, in _build_policy_map
    self.policy_map.create_policy(name, orig_cls, obs_space, act_space,
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy_map.py", line 143, in create_policy
    self[policy_id] = class_(observation_space, action_space,
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy_template.py", line 280, in __init__
    self._initialize_loss_from_dummy_batch(
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy.py", line 731, in _initialize_loss_from_dummy_batch
    self.compute_actions_from_input_dict(
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/torch_policy.py", line 302, in compute_actions_from_input_dict
    return self._compute_action_helper(input_dict, state_batches,
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/threading.py", line 21, in wrapper
    return func(self, *a, **k)
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/torch_policy.py", line 366, in _compute_action_helper
    dist_inputs, state_out = self.model(input_dict, state_batches,
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 243, in __call__
    res = self.forward(restored, state or [], seq_lens)
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/torch/visionnet.py", line 212, in forward
    conv_out = self._convs(self._features)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 117, in forward
    input = module(input)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/torch/misc.py", line 118, in forward
    return self._model(x)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 117, in forward
    input = module(input)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/padding.py", line 21, in forward
    return F.pad(input, self.padding, 'constant', self.value)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/functional.py", line 3553, in _pad
    return _VF.constant_pad_nd(input, pad, value)
RuntimeError: CUDA error: no kernel image is available for execution on the device

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 287, in run_loop
    loop(my_logger, node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin,
  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 480, in loop
    raise InternalProblem(msg) from e  # XXX
zuper_nodes.structures.InternalProblem: Unexpected error:

| Traceback (most recent call last):
|   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 388, in loop
|     call_if_fun_exists(node, "init", context=context_data)
|   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
|     f(**kwargs)
|   File "solution.py", line 32, in init
|     self.model = registy(True)
|   File "/submission/run.py", line 45, in registy
|     trainer = PPOTrainer(config=rllib_config)
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 137, in __init__
|     Trainer.__init__(self, config, env, logger_creator)
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 623, in __init__
|     super().__init__(config, logger_creator)
|   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 107, in __init__
|     self.setup(copy.deepcopy(self.config))
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 147, in setup
|     super().setup(config)
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 776, in setup
|     self._init(self.config, self.env_creator)
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 171, in _init
|     self.workers = self._make_workers(
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 858, in _make_workers
|     return WorkerSet(
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 110, in __init__
|     self._local_worker = self._make_worker(
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 406, in _make_worker
|     worker = cls(
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 584, in __init__
|     self._build_policy_map(
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 1384, in _build_policy_map
|     self.policy_map.create_policy(name, orig_cls, obs_space, act_space,
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy_map.py", line 143, in create_policy
|     self[policy_id] = class_(observation_space, action_space,
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy_template.py", line 280, in __init__
|     self._initialize_loss_from_dummy_batch(
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/policy.py", line 731, in _initialize_loss_from_dummy_batch
|     self.compute_actions_from_input_dict(
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/torch_policy.py", line 302, in compute_actions_from_input_dict
|     return self._compute_action_helper(input_dict, state_batches,
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/threading.py", line 21, in wrapper
|     return func(self, *a, **k)
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/torch_policy.py", line 366, in _compute_action_helper
|     dist_inputs, state_out = self.model(input_dict, state_batches,
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 243, in __call__
|     res = self.forward(restored, state or [], seq_lens)
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/torch/visionnet.py", line 212, in forward
|     conv_out = self._convs(self._features)
|   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
|     result = self.forward(*input, **kwargs)
|   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 117, in forward
|     input = module(input)
|   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
|     result = self.forward(*input, **kwargs)
|   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/torch/misc.py", line 118, in forward
|     return self._model(x)
|   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
|     result = self.forward(*input, **kwargs)
|   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 117, in forward
|     input = module(input)
|   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
|     result = self.forward(*input, **kwargs)
|   File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/padding.py", line 21, in forward
|     return F.pad(input, self.padding, 'constant', self.value)
|   File "/usr/local/lib/python3.8/dist-packages/torch/nn/functional.py", line 3553, in _pad
|     return _VF.constant_pad_nd(input, pad, value)
| RuntimeError: CUDA error: no kernel image is available for execution on the device
| 

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "solution.py", line 128, in <module>
    main()
  File "solution.py", line 124, in main
    wrap_direct(node=node, protocol=protocol)
  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 25, in wrap_direct
    run_loop(node, protocol, args)
  File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 301, in run_loop
    raise Exception(msg) from e
Exception: Error in node PytorchRLTemplateAgent
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.

Highlights

Artifacts

The artifacts are hidden.

Container logs

The logs are hidden.