Duckietown Challenges Home Challenges Submissions

Submission 13549

Submission13549
Competingyes
Challengeaido-LF-sim-testing
UserAndrás Kalapos 🇭🇺
Date submitted
Last status update
Completecomplete
DetailsEvaluation is complete.
Sisters
Result💚
Jobssim-0of4: 105177 sim-1of4: 105178 sim-2of4: 105179 sim-3of4: 105180
Next
User labelreal-v0.9-3092-363
Admin priority50
Blessingn/a
User priority50

The highlights are available only to the owner and the admins.

The highlights are available only to the owner and the admins.

The highlights are available only to the owner and the admins.

The highlights are available only to the owner and the admins.

Evaluation jobs for this submission

Show only up-to-date jobs
Job IDstepstatusup to datedate starteddate completeddurationmessage
105180sim-3of4successyes0:04:31
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
driven_lanedir_consec_median28.421071273830098
survival_time_median59.99999999999873
deviation-center-line_median2.144393857830192
in-drivable-lane_median0.0


other stats
deviation-center-line_max2.144393857830192
deviation-center-line_mean2.144393857830192
deviation-center-line_min2.144393857830192
deviation-heading_max5.5979533770323275
deviation-heading_mean5.5979533770323275
deviation-heading_median5.5979533770323275
deviation-heading_min5.5979533770323275
distance-from-start_max2.5489759409405655
distance-from-start_mean2.5489759409405655
distance-from-start_median2.5489759409405655
distance-from-start_min2.5489759409405655
driven_any_max28.589867555307855
driven_any_mean28.589867555307855
driven_any_median28.589867555307855
driven_any_min28.589867555307855
driven_lanedir_consec_max28.421071273830098
driven_lanedir_consec_mean28.421071273830098
driven_lanedir_consec_min28.421071273830098
driven_lanedir_max28.421071273830098
driven_lanedir_mean28.421071273830098
driven_lanedir_median28.421071273830098
driven_lanedir_min28.421071273830098
in-drivable-lane_max0.0
in-drivable-lane_mean0.0
in-drivable-lane_min0.0
per-episodes
details{"loop-000-ego0": {"driven_any": 28.589867555307855, "survival_time": 59.99999999999873, "driven_lanedir": 28.421071273830098, "in-drivable-lane": 0.0, "deviation-heading": 5.5979533770323275, "distance-from-start": 2.5489759409405655, "deviation-center-line": 2.144393857830192, "driven_lanedir_consec": 28.421071273830098}}
simulation-passed1
survival_time_max59.99999999999873
survival_time_mean59.99999999999873
survival_time_min59.99999999999873
No reset possible
105179sim-2of4successyes0:05:21
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
driven_lanedir_consec_median27.69868721026969
survival_time_median59.99999999999873
deviation-center-line_median2.464563357696819
in-drivable-lane_median0.0


other stats
deviation-center-line_max2.464563357696819
deviation-center-line_mean2.464563357696819
deviation-center-line_min2.464563357696819
deviation-heading_max5.513458469507348
deviation-heading_mean5.513458469507348
deviation-heading_median5.513458469507348
deviation-heading_min5.513458469507348
distance-from-start_max3.970854303423762
distance-from-start_mean3.970854303423762
distance-from-start_median3.970854303423762
distance-from-start_min3.970854303423762
driven_any_max27.864334257201424
driven_any_mean27.864334257201424
driven_any_median27.864334257201424
driven_any_min27.864334257201424
driven_lanedir_consec_max27.69868721026969
driven_lanedir_consec_mean27.69868721026969
driven_lanedir_consec_min27.69868721026969
driven_lanedir_max27.69868721026969
driven_lanedir_mean27.69868721026969
driven_lanedir_median27.69868721026969
driven_lanedir_min27.69868721026969
in-drivable-lane_max0.0
in-drivable-lane_mean0.0
in-drivable-lane_min0.0
per-episodes
details{"autolab-000-ego0": {"driven_any": 27.864334257201424, "survival_time": 59.99999999999873, "driven_lanedir": 27.69868721026969, "in-drivable-lane": 0.0, "deviation-heading": 5.513458469507348, "distance-from-start": 3.970854303423762, "deviation-center-line": 2.464563357696819, "driven_lanedir_consec": 27.69868721026969}}
simulation-passed1
survival_time_max59.99999999999873
survival_time_mean59.99999999999873
survival_time_min59.99999999999873
No reset possible
105178sim-1of4successyes0:05:57
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
driven_lanedir_consec_median26.171613822608744
survival_time_median59.99999999999873
deviation-center-line_median2.6313053592836337
in-drivable-lane_median1.5500000000000005


other stats
deviation-center-line_max2.6313053592836337
deviation-center-line_mean2.6313053592836337
deviation-center-line_min2.6313053592836337
deviation-heading_max6.788122401801841
deviation-heading_mean6.788122401801841
deviation-heading_median6.788122401801841
deviation-heading_min6.788122401801841
distance-from-start_max3.295637120128694
distance-from-start_mean3.295637120128694
distance-from-start_median3.295637120128694
distance-from-start_min3.295637120128694
driven_any_max26.990297307436315
driven_any_mean26.990297307436315
driven_any_median26.990297307436315
driven_any_min26.990297307436315
driven_lanedir_consec_max26.171613822608744
driven_lanedir_consec_mean26.171613822608744
driven_lanedir_consec_min26.171613822608744
driven_lanedir_max26.171613822608744
driven_lanedir_mean26.171613822608744
driven_lanedir_median26.171613822608744
driven_lanedir_min26.171613822608744
in-drivable-lane_max1.5500000000000005
in-drivable-lane_mean1.5500000000000005
in-drivable-lane_min1.5500000000000005
per-episodes
details{"zigzag-000-ego0": {"driven_any": 26.990297307436315, "survival_time": 59.99999999999873, "driven_lanedir": 26.171613822608744, "in-drivable-lane": 1.5500000000000005, "deviation-heading": 6.788122401801841, "distance-from-start": 3.295637120128694, "deviation-center-line": 2.6313053592836337, "driven_lanedir_consec": 26.171613822608744}}
simulation-passed1
survival_time_max59.99999999999873
survival_time_mean59.99999999999873
survival_time_min59.99999999999873
No reset possible
105177sim-0of4successyes0:04:28
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
driven_lanedir_consec_median27.327024796303537
survival_time_median59.99999999999873
deviation-center-line_median2.939640220960191
in-drivable-lane_median0.0


other stats
deviation-center-line_max2.939640220960191
deviation-center-line_mean2.939640220960191
deviation-center-line_min2.939640220960191
deviation-heading_max9.041974132546926
deviation-heading_mean9.041974132546926
deviation-heading_median9.041974132546926
deviation-heading_min9.041974132546926
distance-from-start_max1.0694983054727158
distance-from-start_mean1.0694983054727158
distance-from-start_median1.0694983054727158
distance-from-start_min1.0694983054727158
driven_any_max27.6622070502179
driven_any_mean27.6622070502179
driven_any_median27.6622070502179
driven_any_min27.6622070502179
driven_lanedir_consec_max27.327024796303537
driven_lanedir_consec_mean27.327024796303537
driven_lanedir_consec_min27.327024796303537
driven_lanedir_max27.327024796303537
driven_lanedir_mean27.327024796303537
driven_lanedir_median27.327024796303537
driven_lanedir_min27.327024796303537
in-drivable-lane_max0.0
in-drivable-lane_mean0.0
in-drivable-lane_min0.0
per-episodes
details{"loop2-000-ego0": {"driven_any": 27.6622070502179, "survival_time": 59.99999999999873, "driven_lanedir": 27.327024796303537, "in-drivable-lane": 0.0, "deviation-heading": 9.041974132546926, "distance-from-start": 1.0694983054727158, "deviation-center-line": 2.939640220960191, "driven_lanedir_consec": 27.327024796303537}}
simulation-passed1
survival_time_max59.99999999999873
survival_time_mean59.99999999999873
survival_time_min59.99999999999873
No reset possible
98209sim-0of4successno0:04:28
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
98197sim-1of4successno0:05:57
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
98192sim-0of4successno0:04:36
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
98185sim-2of4successno0:05:16
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
98183sim-3of4successno0:04:24
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88319sim-3of4successno0:08:35
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88318sim-0of4successno0:09:13
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88317sim-0of4successno0:09:17
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88316sim-2of4successno0:10:07
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88313sim-1of4successno0:08:27
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88311sim-1of4successno0:08:11
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88310sim-3of4successno0:08:18
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88308sim-1of4successno0:08:07
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88306sim-2of4successno0:09:58
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88305sim-0of4successno0:09:08
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88304sim-0of4successno0:09:17
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88303sim-3of4successno0:08:11
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88302sim-3of4successno0:08:08
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88301sim-1of4successno0:08:25
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
71348sim-3of4successno0:08:09
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
71347sim-1of4successno0:08:08
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
71346sim-0of4successno0:08:33
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
71344sim-2of4successno0:10:21
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
69291sim-0of4successno0:09:04
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
69290sim-1of4successno0:07:59
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
69289sim-2of4successno0:09:29
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
69288sim-3of4successno0:08:18
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
63331sim-3of4successno0:07:04
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
63328sim-1of4successno0:07:33
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
63326sim-0of4successno0:07:51
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
63322sim-2of4successno0:08:49
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
62349348successyes0:56:32
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
62126348failedno0:01:16
InvalidSubmission: T [...]
InvalidSubmission:
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 242, in main
    robot_ci.write_topic_and_expect_zero("seed", config.seed)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 143, in write_topic_and_expect_zero
    msgs = read_reply(self.fpout, timeout=timeout, nickname=self.nickname)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 309, in read_reply
    raise RemoteNodeAborted(msg)
zuper_nodes.structures.RemoteNodeAborted: The remote node "ego0" aborted with the following error:

error in ego0 |Unexpected error:
              |
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              ||     return fn(*args)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              ||     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              ||     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || During handling of the above exception, another exception occurred:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              ||     return session_or_none.run(symbolic_out[0], feed_dict)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              ||     result = self._run(None, fetches, feed_dict, options_ptr,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              ||     results = self._do_run(handle, final_targets, final_fetches,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              ||     return self._do_call(_run_fn, feeds, fetches, targets, options,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              ||     raise type(e)(node_def, op, message)
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              ||   File "solution.py", line 127, in <module>
              ||     main()
              ||   File "solution.py", line 123, in main
              ||     wrap_direct(node=node, protocol=protocol)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              ||     run_loop(node, protocol, args)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              ||     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              ||     symbolic_out[0] = fn(*placeholders)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              ||     model_out, _ = self.model({
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              ||     res = self.forward(restored, state or [], seq_lens)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              ||     model_out, self._value_out = self.base_model(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              ||     return self._run_internal_graph(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              ||     outputs = node.layer(*args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              ||     return self.activation(outputs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              ||     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              ||     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              ||     ret = Operation(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              ||     self._traceback = tf_stack.extract_stack()
              ||
              ||
              || The above exception was the direct cause of the following exception:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 339, in loop
              ||     raise Exception(msg) from e
              || Exception: Exception while calling the node's init() function.
              ||
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              || |     return fn(*args)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              || |     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              || |     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | During handling of the above exception, another exception occurred:
              || |
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              || |     return session_or_none.run(symbolic_out[0], feed_dict)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              || |     result = self._run(None, fetches, feed_dict, options_ptr,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              || |     results = self._do_run(handle, final_targets, final_fetches,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              || |     return self._do_call(_run_fn, feeds, fetches, targets, options,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              || |     raise type(e)(node_def, op, message)
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              || |   File "solution.py", line 127, in <module>
              || |     main()
              || |   File "solution.py", line 123, in main
              || |     wrap_direct(node=node, protocol=protocol)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              || |     run_loop(node, protocol, args)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              || |     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              || |     symbolic_out[0] = fn(*placeholders)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              || |     model_out, _ = self.model({
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              || |     res = self.forward(restored, state or [], seq_lens)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              || |     model_out, self._value_out = self.base_model(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              || |     return self._run_internal_graph(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              || |     outputs = node.layer(*args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              || |     return self.activation(outputs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              || |     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              || |     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              || |     ret = Operation(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              || |     self._traceback = tf_stack.extract_stack()
              || |
              || |
              ||

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_challenges/cie_concrete.py", line 681, in scoring_context
    yield cie
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 68, in go
    wrap(cie)
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 34, in wrap
    asyncio.run(main(cie, logdir, attempts), debug=True)
  File "/usr/local/lib/python3.8/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/usr/local/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete
    return future.result()
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 249, in main
    raise InvalidSubmission(msg) from e
duckietown_challenges.exceptions.InvalidSubmission: Getting agent protocol
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
62125348failedno0:01:12
InvalidSubmission: T [...]
InvalidSubmission:
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 242, in main
    robot_ci.write_topic_and_expect_zero("seed", config.seed)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 143, in write_topic_and_expect_zero
    msgs = read_reply(self.fpout, timeout=timeout, nickname=self.nickname)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 309, in read_reply
    raise RemoteNodeAborted(msg)
zuper_nodes.structures.RemoteNodeAborted: The remote node "ego0" aborted with the following error:

error in ego0 |Unexpected error:
              |
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              ||     return fn(*args)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              ||     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              ||     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || During handling of the above exception, another exception occurred:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              ||     return session_or_none.run(symbolic_out[0], feed_dict)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              ||     result = self._run(None, fetches, feed_dict, options_ptr,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              ||     results = self._do_run(handle, final_targets, final_fetches,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              ||     return self._do_call(_run_fn, feeds, fetches, targets, options,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              ||     raise type(e)(node_def, op, message)
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              ||   File "solution.py", line 127, in <module>
              ||     main()
              ||   File "solution.py", line 123, in main
              ||     wrap_direct(node=node, protocol=protocol)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              ||     run_loop(node, protocol, args)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              ||     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              ||     symbolic_out[0] = fn(*placeholders)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              ||     model_out, _ = self.model({
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              ||     res = self.forward(restored, state or [], seq_lens)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              ||     model_out, self._value_out = self.base_model(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              ||     return self._run_internal_graph(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              ||     outputs = node.layer(*args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              ||     return self.activation(outputs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              ||     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              ||     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              ||     ret = Operation(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              ||     self._traceback = tf_stack.extract_stack()
              ||
              ||
              || The above exception was the direct cause of the following exception:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 339, in loop
              ||     raise Exception(msg) from e
              || Exception: Exception while calling the node's init() function.
              ||
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              || |     return fn(*args)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              || |     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              || |     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | During handling of the above exception, another exception occurred:
              || |
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              || |     return session_or_none.run(symbolic_out[0], feed_dict)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              || |     result = self._run(None, fetches, feed_dict, options_ptr,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              || |     results = self._do_run(handle, final_targets, final_fetches,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              || |     return self._do_call(_run_fn, feeds, fetches, targets, options,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              || |     raise type(e)(node_def, op, message)
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              || |   File "solution.py", line 127, in <module>
              || |     main()
              || |   File "solution.py", line 123, in main
              || |     wrap_direct(node=node, protocol=protocol)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              || |     run_loop(node, protocol, args)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              || |     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              || |     symbolic_out[0] = fn(*placeholders)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              || |     model_out, _ = self.model({
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              || |     res = self.forward(restored, state or [], seq_lens)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              || |     model_out, self._value_out = self.base_model(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              || |     return self._run_internal_graph(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              || |     outputs = node.layer(*args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              || |     return self.activation(outputs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              || |     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              || |     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              || |     ret = Operation(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              || |     self._traceback = tf_stack.extract_stack()
              || |
              || |
              ||

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_challenges/cie_concrete.py", line 681, in scoring_context
    yield cie
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 68, in go
    wrap(cie)
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 34, in wrap
    asyncio.run(main(cie, logdir, attempts), debug=True)
  File "/usr/local/lib/python3.8/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/usr/local/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete
    return future.result()
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 249, in main
    raise InvalidSubmission(msg) from e
duckietown_challenges.exceptions.InvalidSubmission: Getting agent protocol
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
62124348failedno0:01:14
InvalidSubmission: T [...]
InvalidSubmission:
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 242, in main
    robot_ci.write_topic_and_expect_zero("seed", config.seed)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 143, in write_topic_and_expect_zero
    msgs = read_reply(self.fpout, timeout=timeout, nickname=self.nickname)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 309, in read_reply
    raise RemoteNodeAborted(msg)
zuper_nodes.structures.RemoteNodeAborted: The remote node "ego0" aborted with the following error:

error in ego0 |Unexpected error:
              |
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              ||     return fn(*args)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              ||     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              ||     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || During handling of the above exception, another exception occurred:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              ||     return session_or_none.run(symbolic_out[0], feed_dict)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              ||     result = self._run(None, fetches, feed_dict, options_ptr,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              ||     results = self._do_run(handle, final_targets, final_fetches,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              ||     return self._do_call(_run_fn, feeds, fetches, targets, options,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              ||     raise type(e)(node_def, op, message)
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              ||   File "solution.py", line 127, in <module>
              ||     main()
              ||   File "solution.py", line 123, in main
              ||     wrap_direct(node=node, protocol=protocol)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              ||     run_loop(node, protocol, args)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              ||     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              ||     symbolic_out[0] = fn(*placeholders)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              ||     model_out, _ = self.model({
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              ||     res = self.forward(restored, state or [], seq_lens)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              ||     model_out, self._value_out = self.base_model(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              ||     return self._run_internal_graph(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              ||     outputs = node.layer(*args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              ||     return self.activation(outputs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              ||     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              ||     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              ||     ret = Operation(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              ||     self._traceback = tf_stack.extract_stack()
              ||
              ||
              || The above exception was the direct cause of the following exception:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 339, in loop
              ||     raise Exception(msg) from e
              || Exception: Exception while calling the node's init() function.
              ||
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              || |     return fn(*args)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              || |     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              || |     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | During handling of the above exception, another exception occurred:
              || |
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              || |     return session_or_none.run(symbolic_out[0], feed_dict)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              || |     result = self._run(None, fetches, feed_dict, options_ptr,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              || |     results = self._do_run(handle, final_targets, final_fetches,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              || |     return self._do_call(_run_fn, feeds, fetches, targets, options,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              || |     raise type(e)(node_def, op, message)
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              || |   File "solution.py", line 127, in <module>
              || |     main()
              || |   File "solution.py", line 123, in main
              || |     wrap_direct(node=node, protocol=protocol)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              || |     run_loop(node, protocol, args)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              || |     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              || |     symbolic_out[0] = fn(*placeholders)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              || |     model_out, _ = self.model({
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              || |     res = self.forward(restored, state or [], seq_lens)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              || |     model_out, self._value_out = self.base_model(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              || |     return self._run_internal_graph(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              || |     outputs = node.layer(*args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              || |     return self.activation(outputs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              || |     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              || |     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              || |     ret = Operation(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              || |     self._traceback = tf_stack.extract_stack()
              || |
              || |
              ||

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_challenges/cie_concrete.py", line 681, in scoring_context
    yield cie
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 68, in go
    wrap(cie)
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 34, in wrap
    asyncio.run(main(cie, logdir, attempts), debug=True)
  File "/usr/local/lib/python3.8/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/usr/local/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete
    return future.result()
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 249, in main
    raise InvalidSubmission(msg) from e
duckietown_challenges.exceptions.InvalidSubmission: Getting agent protocol
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
62123348failedno0:01:15
InvalidSubmission: T [...]
InvalidSubmission:
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 242, in main
    robot_ci.write_topic_and_expect_zero("seed", config.seed)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 143, in write_topic_and_expect_zero
    msgs = read_reply(self.fpout, timeout=timeout, nickname=self.nickname)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 309, in read_reply
    raise RemoteNodeAborted(msg)
zuper_nodes.structures.RemoteNodeAborted: The remote node "ego0" aborted with the following error:

error in ego0 |Unexpected error:
              |
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              ||     return fn(*args)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              ||     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              ||     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || During handling of the above exception, another exception occurred:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              ||     return session_or_none.run(symbolic_out[0], feed_dict)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              ||     result = self._run(None, fetches, feed_dict, options_ptr,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              ||     results = self._do_run(handle, final_targets, final_fetches,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              ||     return self._do_call(_run_fn, feeds, fetches, targets, options,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              ||     raise type(e)(node_def, op, message)
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              ||   File "solution.py", line 127, in <module>
              ||     main()
              ||   File "solution.py", line 123, in main
              ||     wrap_direct(node=node, protocol=protocol)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              ||     run_loop(node, protocol, args)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              ||     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              ||     symbolic_out[0] = fn(*placeholders)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              ||     model_out, _ = self.model({
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              ||     res = self.forward(restored, state or [], seq_lens)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              ||     model_out, self._value_out = self.base_model(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              ||     return self._run_internal_graph(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              ||     outputs = node.layer(*args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              ||     return self.activation(outputs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              ||     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              ||     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              ||     ret = Operation(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              ||     self._traceback = tf_stack.extract_stack()
              ||
              ||
              || The above exception was the direct cause of the following exception:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 339, in loop
              ||     raise Exception(msg) from e
              || Exception: Exception while calling the node's init() function.
              ||
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              || |     return fn(*args)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              || |     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              || |     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | During handling of the above exception, another exception occurred:
              || |
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              || |     return session_or_none.run(symbolic_out[0], feed_dict)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              || |     result = self._run(None, fetches, feed_dict, options_ptr,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              || |     results = self._do_run(handle, final_targets, final_fetches,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              || |     return self._do_call(_run_fn, feeds, fetches, targets, options,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              || |     raise type(e)(node_def, op, message)
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              || |   File "solution.py", line 127, in <module>
              || |     main()
              || |   File "solution.py", line 123, in main
              || |     wrap_direct(node=node, protocol=protocol)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              || |     run_loop(node, protocol, args)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              || |     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              || |     symbolic_out[0] = fn(*placeholders)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              || |     model_out, _ = self.model({
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              || |     res = self.forward(restored, state or [], seq_lens)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              || |     model_out, self._value_out = self.base_model(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              || |     return self._run_internal_graph(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              || |     outputs = node.layer(*args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              || |     return self.activation(outputs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              || |     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              || |     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              || |     ret = Operation(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              || |     self._traceback = tf_stack.extract_stack()
              || |
              || |
              ||

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_challenges/cie_concrete.py", line 681, in scoring_context
    yield cie
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 68, in go
    wrap(cie)
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 34, in wrap
    asyncio.run(main(cie, logdir, attempts), debug=True)
  File "/usr/local/lib/python3.8/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/usr/local/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete
    return future.result()
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 249, in main
    raise InvalidSubmission(msg) from e
duckietown_challenges.exceptions.InvalidSubmission: Getting agent protocol
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible