Duckietown Challenges Home Challenges Submissions

Submission 13563

Submission13563
Competingyes
Challengeaido-LFV_multi-sim-validation
UserAndrás Kalapos 🇭🇺
Date submitted
Last status update
Completecomplete
DetailsEvaluation is complete.
Sisters
Result💚
Jobssim-0of4: 105005 sim-1of4: 105010 sim-2of4: 105004 sim-3of4: 105011
Next
User labelreal-v0.9-3092-363
Admin priority50
Blessingn/a
User priority50

105011

Click the images to see detailed statistics about the episode.

loop-000

105010

Click the images to see detailed statistics about the episode.

zigzag-000

105005

Click the images to see detailed statistics about the episode.

loop2-000

105004

Click the images to see detailed statistics about the episode.

autolab-000

Evaluation jobs for this submission

See previous jobs for previous versions of challenges
Job IDstepstatusup to datedate starteddate completeddurationmessage
105011sim-3of4successyes0:17:58
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
survival_time_median59.99999999999873
in-drivable-lane_median0.0
driven_lanedir_consec_median28.403473241747875
deviation-center-line_median2.127375424494426


other stats
deviation-center-line_max2.5728664086750084
deviation-center-line_mean2.2174315992422167
deviation-center-line_min2.0421091393050066
deviation-heading_max5.693405383331286
deviation-heading_mean5.438502145816442
deviation-heading_median5.520169791090012
deviation-heading_min5.020263617754456
distance-from-start_max3.234968152954306
distance-from-start_mean2.7669549806922977
distance-from-start_median2.8905075547072627
distance-from-start_min2.0518366604003604
driven_any_max28.723729357246057
driven_any_mean28.532712647995776
driven_any_median28.567389428807346
driven_any_min28.27234237712236
driven_lanedir_consec_max28.59049430064003
driven_lanedir_consec_mean28.381924897362904
driven_lanedir_consec_min28.130258805315833
driven_lanedir_max28.59049430064003
driven_lanedir_mean28.381924897362904
driven_lanedir_median28.403473241747875
driven_lanedir_min28.130258805315833
in-drivable-lane_max0.0
in-drivable-lane_mean0.0
in-drivable-lane_min0.0
per-episodes
details{"loop-000-ego0": {"driven_any": 28.27234237712236, "survival_time": 59.99999999999873, "driven_lanedir": 28.130258805315833, "in-drivable-lane": 0.0, "deviation-heading": 5.693405383331286, "distance-from-start": 2.0518366604003604, "deviation-center-line": 2.5728664086750084, "driven_lanedir_consec": 28.130258805315833}, "loop-000-ego1": {"driven_any": 28.497546018141456, "survival_time": 59.99999999999873, "driven_lanedir": 28.32979834639587, "in-drivable-lane": 0.0, "deviation-heading": 5.609284985279101, "distance-from-start": 3.229867884030653, "deviation-center-line": 2.1498515048579705, "driven_lanedir_consec": 28.32979834639587}, "loop-000-ego2": {"driven_any": 28.637232839473228, "survival_time": 59.99999999999873, "driven_lanedir": 28.47714813709988, "in-drivable-lane": 0.0, "deviation-heading": 5.431054596900925, "distance-from-start": 3.234968152954306, "deviation-center-line": 2.1048993441308816, "driven_lanedir_consec": 28.47714813709988}, "loop-000-ego3": {"driven_any": 28.723729357246057, "survival_time": 59.99999999999873, "driven_lanedir": 28.59049430064003, "in-drivable-lane": 0.0, "deviation-heading": 5.020263617754456, "distance-from-start": 2.551147225383872, "deviation-center-line": 2.0421091393050066, "driven_lanedir_consec": 28.59049430064003}}
simulation-passed1
survival_time_max59.99999999999873
survival_time_mean59.99999999999873
survival_time_min59.99999999999873
No reset possible
105010sim-1of4successyes0:24:17
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
survival_time_median59.99999999999873
in-drivable-lane_median0.0
driven_lanedir_consec_median26.66469814395
deviation-center-line_median2.659994648176819


other stats
deviation-center-line_max2.8657650210876984
deviation-center-line_mean2.664580980782241
deviation-center-line_min2.472569605687628
deviation-heading_max7.236958823431724
deviation-heading_mean6.790326181631982
deviation-heading_median6.79578973129859
deviation-heading_min6.332766440499022
distance-from-start_max4.4855886097143465
distance-from-start_mean3.824176523222003
distance-from-start_median3.754380768447824
distance-from-start_min3.3023559462780185
driven_any_max26.990994173138336
driven_any_mean26.90335546308159
driven_any_median26.92921590828767
driven_any_min26.763995862612685
driven_lanedir_consec_max26.770901949398585
driven_lanedir_consec_mean26.632736787548524
driven_lanedir_consec_min26.430648912895524
driven_lanedir_max26.770901949398585
driven_lanedir_mean26.632736787548524
driven_lanedir_median26.66469814395
driven_lanedir_min26.430648912895524
in-drivable-lane_max0.6000000000000004
in-drivable-lane_mean0.1500000000000001
in-drivable-lane_min0.0
per-episodes
details{"zigzag-000-ego0": {"driven_any": 26.763995862612685, "survival_time": 59.99999999999873, "driven_lanedir": 26.56453373513373, "in-drivable-lane": 0.0, "deviation-heading": 6.656831487927741, "distance-from-start": 3.7751748118052872, "deviation-center-line": 2.472569605687628, "driven_lanedir_consec": 26.56453373513373}, "zigzag-000-ego1": {"driven_any": 26.990994173138336, "survival_time": 59.99999999999873, "driven_lanedir": 26.76486255276627, "in-drivable-lane": 0.0, "deviation-heading": 7.236958823431724, "distance-from-start": 3.3023559462780185, "deviation-center-line": 2.8657650210876984, "driven_lanedir_consec": 26.76486255276627}, "zigzag-000-ego2": {"driven_any": 26.961269836107025, "survival_time": 59.99999999999873, "driven_lanedir": 26.770901949398585, "in-drivable-lane": 0.0, "deviation-heading": 6.332766440499022, "distance-from-start": 3.73358672509036, "deviation-center-line": 2.5812557650611, "driven_lanedir_consec": 26.770901949398585}, "zigzag-000-ego3": {"driven_any": 26.897161980468315, "survival_time": 59.99999999999873, "driven_lanedir": 26.430648912895524, "in-drivable-lane": 0.6000000000000004, "deviation-heading": 6.934747974669438, "distance-from-start": 4.4855886097143465, "deviation-center-line": 2.738733531292538, "driven_lanedir_consec": 26.430648912895524}}
simulation-passed1
survival_time_max59.99999999999873
survival_time_mean59.99999999999873
survival_time_min59.99999999999873
No reset possible
105005sim-0of4successyes0:09:01
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
survival_time_median59.99999999999873
in-drivable-lane_median0.0
driven_lanedir_consec_median27.68416285152427
deviation-center-line_median2.135794488382506


other stats
deviation-center-line_max2.1359799796937353
deviation-center-line_mean2.135794488382506
deviation-center-line_min2.135608997071278
deviation-heading_max5.746793754315147
deviation-heading_mean5.661031686100326
deviation-heading_median5.661031686100326
deviation-heading_min5.575269617885507
distance-from-start_max1.5464577087914773
distance-from-start_mean1.5323851895738845
distance-from-start_median1.5323851895738845
distance-from-start_min1.5183126703562917
driven_any_max27.886042385944943
driven_any_mean27.87608563709734
driven_any_median27.87608563709734
driven_any_min27.866128888249737
driven_lanedir_consec_max27.697252283832803
driven_lanedir_consec_mean27.68416285152427
driven_lanedir_consec_min27.671073419215737
driven_lanedir_max27.697252283832803
driven_lanedir_mean27.68416285152427
driven_lanedir_median27.68416285152427
driven_lanedir_min27.671073419215737
in-drivable-lane_max0.0
in-drivable-lane_mean0.0
in-drivable-lane_min0.0
per-episodes
details{"loop2-000-ego0": {"driven_any": 27.886042385944943, "survival_time": 59.99999999999873, "driven_lanedir": 27.697252283832803, "in-drivable-lane": 0.0, "deviation-heading": 5.575269617885507, "distance-from-start": 1.5183126703562917, "deviation-center-line": 2.1359799796937353, "driven_lanedir_consec": 27.697252283832803}, "loop2-000-ego1": {"driven_any": 27.866128888249737, "survival_time": 59.99999999999873, "driven_lanedir": 27.671073419215737, "in-drivable-lane": 0.0, "deviation-heading": 5.746793754315147, "distance-from-start": 1.5464577087914773, "deviation-center-line": 2.135608997071278, "driven_lanedir_consec": 27.671073419215737}}
simulation-passed1
survival_time_max59.99999999999873
survival_time_mean59.99999999999873
survival_time_min59.99999999999873
No reset possible
105004sim-2of4successyes0:24:53
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
survival_time_median59.99999999999873
in-drivable-lane_median0.0
driven_lanedir_consec_median26.287948179249643
deviation-center-line_median2.8731366107785723


other stats
deviation-center-line_max3.021108032629979
deviation-center-line_mean2.87224996735763
deviation-center-line_min2.721618615243398
deviation-heading_max6.985905102960958
deviation-heading_mean6.286076503309973
deviation-heading_median6.246693052759637
deviation-heading_min5.66501480475966
distance-from-start_max4.3868081400535885
distance-from-start_mean3.7216070386726208
distance-from-start_median3.857095660393799
distance-from-start_min2.785428693849296
driven_any_max27.494357729324072
driven_any_mean26.541770215753267
driven_any_median26.474516253096223
driven_any_min25.72369062749655
driven_lanedir_consec_max27.32629700773004
driven_lanedir_consec_mean26.364562062840932
driven_lanedir_consec_min25.556054885134408
driven_lanedir_max27.32629700773004
driven_lanedir_mean26.364562062840932
driven_lanedir_median26.287948179249643
driven_lanedir_min25.556054885134408
in-drivable-lane_max0.0
in-drivable-lane_mean0.0
in-drivable-lane_min0.0
per-episodes
details{"autolab-000-ego0": {"driven_any": 26.944520730328534, "survival_time": 59.99999999999873, "driven_lanedir": 26.731339416976574, "in-drivable-lane": 0.0, "deviation-heading": 6.985905102960958, "distance-from-start": 4.010578200047596, "deviation-center-line": 2.9904411221777205, "driven_lanedir_consec": 26.731339416976574}, "autolab-000-ego1": {"driven_any": 26.00451177586391, "survival_time": 59.99999999999873, "driven_lanedir": 25.84455694152271, "in-drivable-lane": 0.0, "deviation-heading": 5.66501480475966, "distance-from-start": 4.3868081400535885, "deviation-center-line": 2.721618615243398, "driven_lanedir_consec": 25.84455694152271}, "autolab-000-ego2": {"driven_any": 27.494357729324072, "survival_time": 59.99999999999873, "driven_lanedir": 27.32629700773004, "in-drivable-lane": 0.0, "deviation-heading": 6.149967977915028, "distance-from-start": 2.785428693849296, "deviation-center-line": 2.755832099379424, "driven_lanedir_consec": 27.32629700773004}, "autolab-000-ego3": {"driven_any": 25.72369062749655, "survival_time": 59.99999999999873, "driven_lanedir": 25.556054885134408, "in-drivable-lane": 0.0, "deviation-heading": 6.343418127604246, "distance-from-start": 3.703613120740002, "deviation-center-line": 3.021108032629979, "driven_lanedir_consec": 25.556054885134408}}
simulation-passed1
survival_time_max59.99999999999873
survival_time_mean59.99999999999873
survival_time_min59.99999999999873
No reset possible
88315403successyes0:46:50
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88314403successyes0:38:59
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88279402successyes0:43:07
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88278403successyes0:47:47
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88277402successyes0:50:59
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
88276403successyes0:47:03
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
71823403successyes0:48:01
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
71814402successyes1:00:38
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
71501402timeoutyes----No reset possible
71467403timeoutyes----No reset possible
71349402successyes0:58:25
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
71345403successyes0:49:40
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
62345356failedyes0:01:47
InvalidSubmission: T [...]
InvalidSubmission:
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 242, in main
    robot_ci.write_topic_and_expect_zero("seed", config.seed)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 143, in write_topic_and_expect_zero
    msgs = read_reply(self.fpout, timeout=timeout, nickname=self.nickname)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 309, in read_reply
    raise RemoteNodeAborted(msg)
zuper_nodes.structures.RemoteNodeAborted: The remote node "ego1" aborted with the following error:

error in ego1 |Unexpected error:
              |
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              ||     return fn(*args)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              ||     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              ||     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || During handling of the above exception, another exception occurred:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              ||     return session_or_none.run(symbolic_out[0], feed_dict)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              ||     result = self._run(None, fetches, feed_dict, options_ptr,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              ||     results = self._do_run(handle, final_targets, final_fetches,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              ||     return self._do_call(_run_fn, feeds, fetches, targets, options,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              ||     raise type(e)(node_def, op, message)
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              ||   File "solution.py", line 127, in <module>
              ||     main()
              ||   File "solution.py", line 123, in main
              ||     wrap_direct(node=node, protocol=protocol)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              ||     run_loop(node, protocol, args)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              ||     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              ||     symbolic_out[0] = fn(*placeholders)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              ||     model_out, _ = self.model({
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              ||     res = self.forward(restored, state or [], seq_lens)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              ||     model_out, self._value_out = self.base_model(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              ||     return self._run_internal_graph(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              ||     outputs = node.layer(*args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              ||     return self.activation(outputs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              ||     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              ||     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              ||     ret = Operation(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              ||     self._traceback = tf_stack.extract_stack()
              ||
              ||
              || The above exception was the direct cause of the following exception:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 339, in loop
              ||     raise Exception(msg) from e
              || Exception: Exception while calling the node's init() function.
              ||
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              || |     return fn(*args)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              || |     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              || |     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | During handling of the above exception, another exception occurred:
              || |
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              || |     return session_or_none.run(symbolic_out[0], feed_dict)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              || |     result = self._run(None, fetches, feed_dict, options_ptr,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              || |     results = self._do_run(handle, final_targets, final_fetches,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              || |     return self._do_call(_run_fn, feeds, fetches, targets, options,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              || |     raise type(e)(node_def, op, message)
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              || |   File "solution.py", line 127, in <module>
              || |     main()
              || |   File "solution.py", line 123, in main
              || |     wrap_direct(node=node, protocol=protocol)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              || |     run_loop(node, protocol, args)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              || |     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              || |     symbolic_out[0] = fn(*placeholders)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              || |     model_out, _ = self.model({
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              || |     res = self.forward(restored, state or [], seq_lens)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              || |     model_out, self._value_out = self.base_model(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              || |     return self._run_internal_graph(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              || |     outputs = node.layer(*args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              || |     return self.activation(outputs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              || |     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              || |     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              || |     ret = Operation(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              || |     self._traceback = tf_stack.extract_stack()
              || |
              || |
              ||

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_challenges/cie_concrete.py", line 681, in scoring_context
    yield cie
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 68, in go
    wrap(cie)
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 34, in wrap
    asyncio.run(main(cie, logdir, attempts), debug=True)
  File "/usr/local/lib/python3.8/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/usr/local/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete
    return future.result()
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 249, in main
    raise InvalidSubmission(msg) from e
duckietown_challenges.exceptions.InvalidSubmission: Getting agent protocol
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible
62344356failedyes0:03:05
InvalidSubmission: T [...]
InvalidSubmission:
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 242, in main
    robot_ci.write_topic_and_expect_zero("seed", config.seed)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 143, in write_topic_and_expect_zero
    msgs = read_reply(self.fpout, timeout=timeout, nickname=self.nickname)
  File "/usr/local/lib/python3.8/site-packages/zuper_nodes_wrapper/wrapper_outside.py", line 309, in read_reply
    raise RemoteNodeAborted(msg)
zuper_nodes.structures.RemoteNodeAborted: The remote node "ego1" aborted with the following error:

error in ego1 |Unexpected error:
              |
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              ||     return fn(*args)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              ||     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              ||     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || During handling of the above exception, another exception occurred:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              ||     return session_or_none.run(symbolic_out[0], feed_dict)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              ||     result = self._run(None, fetches, feed_dict, options_ptr,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              ||     results = self._do_run(handle, final_targets, final_fetches,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              ||     return self._do_call(_run_fn, feeds, fetches, targets, options,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              ||     raise type(e)(node_def, op, message)
              || tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              ||   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              ||   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || 	 [[default_policy/strided_slice_1/_3]]
              || 0 successful operations.
              || 0 derived errors ignored.
              ||
              || Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              ||   File "solution.py", line 127, in <module>
              ||     main()
              ||   File "solution.py", line 123, in main
              ||     wrap_direct(node=node, protocol=protocol)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              ||     run_loop(node, protocol, args)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              ||     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              ||     call_if_fun_exists(node, "init", context=context_data)
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              ||     f(**kwargs)
              ||   File "solution.py", line 29, in init
              ||     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              ||   File "/submission/model.py", line 55, in __init__
              ||     self.model = PPOTrainer(config=config["rllib_config"])
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              ||     Trainer.__init__(self, config, env, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              ||     super().__init__(config, logger_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              ||     self._setup(copy.deepcopy(self.config))
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              ||     self._init(self.config, self.env_creator)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              ||     self.workers = self._make_workers(env_creator, self._policy,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              ||     return WorkerSet(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              ||     self._local_worker = self._make_worker(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              ||     worker = cls(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              ||     self._build_policy_map(policy_dict, policy_config)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              ||     policy_map[name] = cls(obs_space, act_space, merged_conf)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              ||     DynamicTFPolicy.__init__(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              ||     self._initialize_loss()
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              ||     postprocessed_batch = self.postprocess_trajectory(
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              ||     return postprocess_fn(self, sample_batch, other_agent_batches,
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              ||     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              ||     symbolic_out[0] = fn(*placeholders)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              ||     model_out, _ = self.model({
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              ||     res = self.forward(restored, state or [], seq_lens)
              ||   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              ||     model_out, self._value_out = self.base_model(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              ||     return self._run_internal_graph(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              ||     outputs = node.layer(*args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              ||     outputs = call_fn(cast_inputs, *args, **kwargs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              ||     return self.activation(outputs)
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              ||     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              ||     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              ||     ret = Operation(
              ||   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              ||     self._traceback = tf_stack.extract_stack()
              ||
              ||
              || The above exception was the direct cause of the following exception:
              ||
              || Traceback (most recent call last):
              ||   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 339, in loop
              ||     raise Exception(msg) from e
              || Exception: Exception while calling the node's init() function.
              ||
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1365, in _do_call
              || |     return fn(*args)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1349, in _run_fn
              || |     return self._call_tf_sessionrun(options, feed_dict, fetch_list,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1441, in _call_tf_sessionrun
              || |     return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[{{node default_policy/functional_1_1/conv_value_1/Relu}}]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | During handling of the above exception, another exception occurred:
              || |
              || | Traceback (most recent call last):
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 86, in call
              || |     return session_or_none.run(symbolic_out[0], feed_dict)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 957, in run
              || |     result = self._run(None, fetches, feed_dict, options_ptr,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1180, in _run
              || |     results = self._do_run(handle, final_targets, final_fetches,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1358, in _do_run
              || |     return self._do_call(_run_fn, feeds, fetches, targets, options,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1384, in _do_call
              || |     raise type(e)(node_def, op, message)
              || | tensorflow.python.framework.errors_impl.UnknownError: 2 root error(s) found.
              || |   (0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || |   (1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
              || | 	 [[node default_policy/functional_1_1/conv_value_1/Relu (defined at /usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py:103) ]]
              || | 	 [[default_policy/strided_slice_1/_3]]
              || | 0 successful operations.
              || | 0 derived errors ignored.
              || |
              || | Original stack trace for 'default_policy/functional_1_1/conv_value_1/Relu':
              || |   File "solution.py", line 127, in <module>
              || |     main()
              || |   File "solution.py", line 123, in main
              || |     wrap_direct(node=node, protocol=protocol)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/interface.py", line 24, in wrap_direct
              || |     run_loop(node, protocol, args)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 243, in run_loop
              || |     loop(node_name, fi, fo, node, protocol, tin, tout, config=config, fi_desc=fin, fo_desc=fout)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/wrapper.py", line 322, in loop
              || |     call_if_fun_exists(node, "init", context=context_data)
              || |   File "/usr/local/lib/python3.8/dist-packages/zuper_nodes_wrapper/utils.py", line 21, in call_if_fun_exists
              || |     f(**kwargs)
              || |   File "solution.py", line 29, in init
              || |     self.model = RLlibModel(SEED,experiment_idx=0,checkpoint_idx=0,logger=context)
              || |   File "/submission/model.py", line 55, in __init__
              || |     self.model = PPOTrainer(config=config["rllib_config"])
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
              || |     Trainer.__init__(self, config, env, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 455, in __init__
              || |     super().__init__(config, logger_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/tune/trainable.py", line 174, in __init__
              || |     self._setup(copy.deepcopy(self.config))
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 596, in _setup
              || |     self._init(self.config, self.env_creator)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer_template.py", line 115, in _init
              || |     self.workers = self._make_workers(env_creator, self._policy,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/trainer.py", line 662, in _make_workers
              || |     return WorkerSet(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 61, in __init__
              || |     self._local_worker = self._make_worker(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/worker_set.py", line 237, in _make_worker
              || |     worker = cls(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 360, in __init__
              || |     self._build_policy_map(policy_dict, policy_config)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/evaluation/rollout_worker.py", line 842, in _build_policy_map
              || |     policy_map[name] = cls(obs_space, act_space, merged_conf)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 129, in __init__
              || |     DynamicTFPolicy.__init__(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 237, in __init__
              || |     self._initialize_loss()
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/dynamic_tf_policy.py", line 324, in _initialize_loss
              || |     postprocessed_batch = self.postprocess_trajectory(
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/policy/tf_policy_template.py", line 155, in postprocess_trajectory
              || |     return postprocess_fn(self, sample_batch, other_agent_batches,
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 182, in postprocess_ppo_gae
              || |     last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/utils/tf_ops.py", line 84, in call
              || |     symbolic_out[0] = fn(*placeholders)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/agents/ppo/ppo_tf_policy.py", line 235, in value
              || |     model_out, _ = self.model({
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/modelv2.py", line 150, in __call__
              || |     res = self.forward(restored, state or [], seq_lens)
              || |   File "/usr/local/lib/python3.8/dist-packages/ray/rllib/models/tf/visionnet_v2.py", line 103, in forward
              || |     model_out, self._value_out = self.base_model(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 385, in call
              || |     return self._run_internal_graph(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
              || |     outputs = node.layer(*args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 776, in __call__
              || |     outputs = call_fn(cast_inputs, *args, **kwargs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/keras/layers/convolutional.py", line 269, in call
              || |     return self.activation(outputs)
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 10435, in relu
              || |     _, _, _op, _outputs = _op_def_library._apply_op_helper(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/op_def_library.py", line 742, in _apply_op_helper
              || |     op = g._create_op_internal(op_type_name, inputs, dtypes=None,
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 3477, in _create_op_internal
              || |     ret = Operation(
              || |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/ops.py", line 1949, in __init__
              || |     self._traceback = tf_stack.extract_stack()
              || |
              || |
              ||

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/site-packages/duckietown_challenges/cie_concrete.py", line 681, in scoring_context
    yield cie
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 68, in go
    wrap(cie)
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/experiment_manager.py", line 34, in wrap
    asyncio.run(main(cie, logdir, attempts), debug=True)
  File "/usr/local/lib/python3.8/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/usr/local/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete
    return future.result()
  File "/usr/local/lib/python3.8/site-packages/duckietown_experiment_manager/code.py", line 249, in main
    raise InvalidSubmission(msg) from e
duckietown_challenges.exceptions.InvalidSubmission: Getting agent protocol
Artefacts hidden. If you are the author, please login using the top-right link or use the dashboard.
No reset possible